易教网-杭州家教
当前城市:杭州 [切换其它城市] 
hz.eduease.com 家教热线请家教热线:400-6789-353 010-64436939

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网杭州家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造杭州地区请家教,做家教,找家教的专业平台,敬请致电:400-6789-353

当前位置:家教网首页 > 杭州家教网 > 高考资讯 > 易教网分享:高三数学统计与统计案例、算法初步检测题

易教网分享:高三数学统计与统计案例、算法初步检测题

【来源:易教网 更新时间:2013-09-13

高三数学章末综合测试题(17)统计与统计案例、算法初步
一、选择题(本大题共12小题,每小题5分,共 60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.条件结构不同于顺序结构的明显特征是含有(  )
              A.处理框                         B.判断框
              C.起止框                         D.输入、输出框
 解析 B 由条件结构与顺序结构定义可知,条 件结构有判断框,而顺序结构中无判断框.
2.给出以下四个问题:①输入一个数x,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数f(x)=3x-1,x≤0,x2+1,x>0的函数值.其中需要用条件结构来描述算法的有(  ) 
A.1个  B.2个
C.3个  D.4个
 解析 C 其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.
3.若右面的流程图的作用是交换两个变量的值并输出,则(1)处应填上(  )
A.x=y  B.y=x
C.T=y  D.x=T
 解析 A 中间变量为T,将T=x后,T就是x,则将x=y后,x就变为y了.故选A.
4.对于算法:
第一步,输入n.
第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.
第三步,依次从2到n-1检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.
第四步,输出n.
满足条件的n是(  )
A.质数  B.奇数
C.偶数  D.合数
 解析 A 只能被1和自身整除的大于1的整数叫质数,2是最小的质数.这个算法通过对2到n-1一一验证,看是否有其他约数,来判断其是否为质数.
5.(2011•湖北八校联考)在样本的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其他4个小长方形的面积和的14,且样本容量为100,则正中间的一组的频数为(  )
A.80  B.0.8
C.20  D.0.2
解析  C ∵在样本的频率分布直方图中,小长方形的面积=频率,∴中间的一个小长方形所对应的频率是15,又∵频率=频数样本容量,∴正中间一组的频数是15×100=20.故选C.
6.已知程序框图如图所示,该程序运行后,为使输出的b值为16,则循环体的判断框内①处应填(  )

A.2  B.3
C.4  D.5
 解析 B a=1时进入循环,此时b=21=2;a=2时再进入循环,此时b=22=4;a=3时再进入循环,此时b=24=16.∴a=4时应跳出循环,∴循环满足的条件为a≤3,故选B.
7.下列程序框图是循环结构的是(  )

A.①②  B.②③
C.③④  D.②④
 解析 C 由循环结构的定义,易知③④是循环结构.
8.(2011•江西八校联考)在2011年3月15日那天,南昌市物价部门对本市的5家商场的某商品的一天销售量及其价格进行了调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x 9 9.5 10 10.5 11
销售量y 11 10 8 6 5
通过散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归直线的方程是y^=-3.2x+a,则a=(  )
A.-24  B.35.6
C.40.5  D.40
 解析 D 由题意得到x=15×(9+9.5+10+10.5+11)=10,y=15×(11+10+8+6+5)=8,且回归直线必经过点(x,y)=(10,8),则有8=-3.2×10+a,a=40,故选D.
9.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则(  )
A.r2<r1<0  B.0<r2<r1
C.r2<0<r1  D.r2=r1
 解析 C 对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r1>0;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r2<0,所以有r2<0<r1.故选C.
10.阅读如图所示的程序框图,若输入的n是100,则输出的变量S和T的值依次是(  )

A.2 500,2 500  B.2 550,2 550
C.2 500,2 550  D.2 550,2 500
 解析 D 由程序框图知,S=100+98+96+…+2=2 550,T=99+97+95+…+1=2 500,故选D.
11.(2011•山西三市联考)某同学进入高三后,4次月考的数学成绩的茎叶图如图,则该同学数学成绩的方差是(  )
A.125  B.55
C.45  D.35
 解析 C 由图可知,4次成绩分别为114,126,128,132,4次成绩的平均值是125,故该同学数学成绩的方差是s2=14[(114-125)2+(126-125)2+(128-125)2+(132-125)2]=14×(121+1+9+49)=45.
12.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:
表1 市场供给量
单价(元/千克) 2 2.5 3 3.3  3.5 4
供给量(1 000 千克) 50 60 70 75 80 90
表2 市场需求量
单价(元/千克) 4 3.5 3.2 2.8 2.4 2
需求量(1 000千克) 50 60 65 70 75 80
根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在的区间是(  )
A.(2.4,2.5)  B.(2.5,2.8)
C.(2.8,3)  D.(3,3.2)
 解析 C 由表1、表2可知,当市场供给量为60~70时,市场单价为2.5~3,当市场需求量为65~70时,市场单价为2.8~3.2,∴市场供需平衡点应在(2.8,3)内,故选C.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.如图甲是计算图乙中空白部分面积的程序框图,则①处应填________.

 解析 由题意可得:S=14πa22-12×a2×a2×8=π2-1a2,
         故①处应填S=π2-1a2.
【答案】 S=π2-1a2
14.给出以下算法:
第一步:i=3,S=0;
第二步:i=i+2;
第三步:S=S+i;
第四步:如果S≥2 013,则执行第五步;否则执行第二步;
第五步:输出i;
第六步:结束.
则算法完成后,输出的i的值等于________.
 解析 根据算法可知,i的值in构成一个等差数列{in},S的值是数列{in}相应的前n项的和,且i1=5,d=2,又S≥2 013,所以n≥43,所以输出的i的值为i1+(n-1)×d=5+(43-1)×2=89.
【答案】 89
15.对一些城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查后知,y与x具有相关关系,满足回归方程y=0.66x+1.562.若某被调查城市居民人均消费水平为7.675(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为________%(保留两个有效数字).
 解析 依题意得,当y=7.675时, 有0.66x+1.562=7.675,x≈9.262.因此,可以估计该城市人均消费额占人均工资收入的百分比为7.6759.262≈83%.
【答案】 83
16.如图所示的程序框图可用来估计π的 值(假设函数RAND(-1,1)是产生随机数的函数,它能随机产生区间(-1,1)内的任何一个实数).如果输入1 000,输出的结果为788,则运用此方法估计的π的近似值为________.

 解析 本题转化为用几何概型求概率的问题.根据程序框图知,如果点在圆x2+y2=1内,m就和1相加一次;现输入N为1 000,m起始值为0,输出结果为788,说明m相加了788次,也就是说有788个点在圆x2+y2=1内.设圆的面积为S1,正方形的面积为S2,则概率P=S1S2=π4,∴π=4P=4×7881 000=3.152.
【答案】 3.152
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)如图所示的算法中,令a=tan θ,b=sin θ,c=cos θ,若在集合θ-π4<θ<3π4,θ≠0,π4,π2中,给θ取一个值,输出 的结果是sin θ,求θ值所在的范围.
 解析 由框图知,输出的a是a、b、c中最大的.由此可知,sin θ>cos θ,sin θ>tan θ.又θ在集合
θ-π4<θ<3π4,θ≠0,π4,π2中,∴θ值所在的范围为π2,3π4.
18.(12分)(2011•江西七校联考)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的部分频率分布直方图,观察图形的信息,回答下列问题.

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
 解析 (1)设第i组的频率为fi(i=1,2,3,4,5,6),因为这六组的频率和等于1,故第四组的频率:
f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.
频率分布直方图如图所示.
新课标第一网]
(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的及格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:
45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.
19.(12 分)国庆期间,某超市对顾客实行购物优惠活动,规定一次购物付款总额:
①若不超过200元,则不予优惠;
②若超过200元,但不超过500 元,则按所标的价格给予9折优惠;
③如果超过500元,500元的部分按②优惠,超过500元的部分给予7折优惠.
设计一个收款的算法,并画出程序框图.
 解析 依题意,付款总额y与标价x之间的关系式为(单位为元):y=x(x≤200),0.9x(200<x≤500),0.9×500+0.7×(x-500)(x>500).
算法:
第一步,输入x值.
第二步,判断,如果x≤200,则输出x,结束算法;否则执行第三步.
第三步,判断,如果x≤500成立,则计算y=0.9x,并输出y,结束算法 ;否则执行第四步.
第四步,计算:y=0.9×500+0.7×(x-500),并输出y,结 束算法.
程序框图:

20.(12分)如图所示的是为了解决某个问题而绘制的程序框图,仔细分析各图框的内容及图框之间的关系,回答下列问题:
(1)该程序框图解决的是怎样的一个问题?
(2)当输入2时,输出的值为3,当输入-3时,输出的值为-2,求当输入5时,输出的值为多少?
(3)在(2)的前提下,输入的x值越大,输出的ax+b是不是越大?为什么?
(4)在(2)的前提下,当输入的x值为多大时,可使得输出的ax+b结果等于0?
 解析 (1)该程序框图解决的是求函数f(x)=ax+b的函数值问题,其中输入的是自变量x的值,输出的是x对应的函数值.
(2)由已知得2a+b=3,            ①-3a+b=-2,  ②
由①②,得a=1,b=1.f(x)=x+1,
当x输入5时,输出的值为f(5)=5+1=6.
(3)输入的x值越大,输出的函数值ax+b越大.
因为f(x)=x+1是R上的增函数.
(4)令f(x)=x+1=0,得x=-1,
因而当输入的x为-1时,
输出的函数值为0.
21.(12分)(2011•东北三校一模) 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)

(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据以上数据完成下列2×2列联表:
主食蔬菜 主食肉类 总计
50岁以下 
50岁以上 
总计 
(3)能否有99%的把握认为其 亲属的饮食习惯与年龄有关,并写出简要分析.
附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).
P(K2≥k0) 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
 解析 (1)在30位亲属中,50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉类为主.
(2)2×2列联表如下:
主食蔬菜 主食肉类 总计
50岁以下 4 8 12
50岁以上 16 2 18
总计 20 10 30
(3)因为K2=30×(8-128)212×18×20×10=30×120×12012×18×20×10=10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.
22.(12分)对任意函数f(x),x∈D,可按如图构造一个数列发生器,其工作原理如下:

①输入数据x0∈D,经数列发生器输出x1=f(x0);
②若x1∉D,则数列发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.
现定义f(x)=4x-2x+1.
(1)输入x0=4965,则由数列发生器产生数列{xn},请写出数列{xn}的所有项;
(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.
 解析 (1)函数f(x)=4x-2x+1的定义域为
D=(-∞,-1)∪(-1,+∞),
∴输入x 0=4965时,数列{xn}只有三项:
x1=1119,x2=15,x3=-1.
(2)若要数列发生器产生一个无穷的常数列,
则f(x)=4x-2x+1=x有解,
整理得,x2-3x+2=0,∴x=1或x=2.
x0=1时,xn+1=4xn-2xn+1=xn,即xn=1;
x0=2时,xn+1=4xn-2xn+1=xn,即xn=2.
∴x0=1或x0=2.

-更多-

最新教员

  1. 叶教员 杭州电子科技大学 网络空间安全
  2. 楼教员 浙江科技大学 汉语言文学
  3. 陈教员 杭州电子科技大学 管理科学与工程
  4. 钱教员 浙江科技学院 数据科学与大数据技术
  5. 柳教员 重庆邮电大学 电子与信息工程
  6. 李教员 浙江工业大学 机械
  7. Ti教员 杭州橄榄树学校 英语
  8. 吴教员 浙江理工大学 土木工程
  9. 徐教员 浙江工商大学 计算机科学与技术